LLNL-POST-756180 Collaborative Autonomy for Space Situational Awareness DOE CSGF PROGRESS & RÉSULTS Julia Ebert,¹ Joshua Meyers,² William Dawson,² and Michael Schneider² ¹Harvard University,^{*2}Lawrence[×]Livermore National Laboratory

ABSTRACT

Tracking satellites is an important component of space situational awareness (SSA). However, current ground-based tracking approaches rely on **centralized** detection and require **hours** to accurately estimate an orbit. A constellation of low-cost, **autonomous** cube satellites could provide a **fast** and robustly **decentralized** architecture for SSA. We propose **distributed particles filters** as a method to iteratively refine orbit estimates with **low communication** bandwidth. We demonstrate the feasibility of this approach by implementing our algorithm in **simulation**. This simulator can also be used to evaluate the parameter space for future satellite constellation design, as well as test the system's robustness to failures.

PROBLEM

GOAL

Fast, robust, distributed orbit determination of multiple targets

CHALLENGES

- Imperfect knowledge (e.g., noisy sensing, faulty clocks)
- Limited communication (low bandwidth, occlusion)

SYSTEM

Targets: Satellites in geosynchronous orbit

Observers: Multiple cube satellites with sensors in low-earth orbit Hub: Ground-based center for coordination and communication **Communication:**

Hub \leftrightarrow *CubeSat:* Overhead satellites, higher bandwidth

ALGORITHM

1. OBSERVATION

- Take 10–30 s bserviations of target
- Estimate streak endpoints with Monte Carlo sampling
- Convert to cartesian endpoint positions (using sampled range)
- 2. PRELIMINARY ORBIT DETERMINATION
- Compute Keplerian orbit parameters (6) for each endpoint pair **3. PARTICLE FILTER**
 - Incorporate all orbit estimates into 6D particle filter for target
 - Resample particles for uniform weight
- 4. BROADCAST
 - Broadcast particles to any other sats within range (~1 particle/s)
 - Send most informative particles
- **5. RECEIVE AND INCORPORATE**
- Incorporate particles from other observers into orbit estimate

TARGET SELECTION

- Observers individually select target to observe from common set
- Observe unoccluded target with least certain orbit estimate

SIMULATOR

SYSTEM ARCHICTURE

- Separate modules to represent each CubeSat, communication channel, and hub
- Shared custom wire protocol with bandwidth and latency constraints
- Targets represented within

IMPLEMENTATION

- Modules are multi-threaded Python processes
- TCP/IP communication over sockets
- TLEs specify ground truth orbits
- Scaled real-time clocks (implicit synchronization, allows drift and communication latency)

USAGE

- Launch hub channel process (specifies and propogates initial model time)
- Other processes connect to sockets
- Hub broadcasts initial target list to CubeSats

TARGETS (GEO) Orbits uncertain

CUBESATS (LEO) Observe targets Estimate orbits Broadcast particles

HUB Broadcasts target lists Receives orbit esimates

Observer: WASEDA-3 **Target:** GPS BIIA-23 (PRN 18) **Time:** 2018-07-11 3:11:01 UTC

1. 10 s exposure from CubeSat 2. Streak detection **3.** Preliminary orbit estimation

In progress: Integration of orbit determination and particle filter into simulator.

Preliminary

orbit estimates

DISCUSSION & FUTURE WORK

orbit

WASEDA-3

CONCLUSION

SYSTEM EVALUATION/UTILIZATION

EXTENSIONS

- modeling

REFERENCES

M Schneider (2011). "Bayesian linking of geosynchronous orbital debris tracks as seen by the Large Synoptic Survey Telescope." WA Dawson, MD Schneider, C Kamath (2016). "Blind Detection of Ultra-faint Streaks with a Maximum Likelihood Method." MD Schneider, WA Dawson (2016). "Synthesis of Disparate Optical Imaging Data for Space Domain Awareness."

Not to scale

Part of this work was performed under the auspices of the U.S. Department of Energy for Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Streak detected

GPS BIIA-23 (PRN 18) true orbit

• Algorithm can successfully estimate GEO orbits from LEO • Distributed simulator allows for integrated testing of orbit determination and system design

• Monte Carlo simulations to optimize system parameters (e.g. number and orbit of CubeSats, sensor design) • Test system robustness to Byzantine failures

• Frame tradeoffs in bits of information for optimization: e.g., choice of what to communication, where to observe • Improved target selection: Determine heuristics ahead of time for optimal selection without online Bayesian forward