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Abstract— This study examines human control of physical
interaction with objects that exhibit complex (nonlinear, chaotic,
underactuated) dynamics. We hypothesized that humans ex-
ploited stability properties of the human-object interaction.
Using a simplified 2D model for carrying a “cup of coffee”, we
developed a virtual implementation to identify human control
strategies. Transporting a cup of coffee was modeled as a cart
with a suspended pendulum, where humans moved the cart
on a horizontal line via a robotic manipulandum. The specific
task was to transport the cart-pendulum system to a target,
as fast as possible, while accommodating assistive and resistive
perturbations. To assess trajectory stability, we applied con-
traction analysis. We showed that when the perturbation was
assistive, humans absorbed the perturbation by controlling cart
trajectories into a contraction region prior to the perturbation.
When the perturbation was resistive, subjects passed through a
contraction region following the perturbation. Entering a con-
traction region stabilizes performance and makes the dynamics
more predictable. This human control strategy could inspire
more robust control strategies for physical interaction in robots.

I. INTRODUCTION

Compared to modern-day robots, human actuation is in-
ferior in both bandwidth and speed of information trans-
mission. Despite this fact, humans display superior agility
and dexterity, especially when they are physically interacting
with dynamically complex objects. This disparity in per-
formance raises the question of how humans achieve their
remarkable dexterity. Better understanding of human motor
control might inform advances in the control of robots,
exoskeletons and prostheses.

Insights gained in human motor control have helped in-
spire new ways to address problems in robot motion and
control. For example, the framework of dynamic movement
primitives for motor control in robotics is closely related
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to Central Pattern Generators (CPG) in neurobiology [1].
Building upon recent advances in the control of the human
hand during grasping, Ciocarlie et al. [2] [3] devised a grasp
planning algorithm that operates on a hand posture subspace
of highly reduced dimensionality. Recently, Ott et al. [4]
showed on a humanoid robot that a biologically inspired
posture control approach is more robust than a model-based
one. Inspired by human motor learning principles, Gehring et
al. [5] devised a method for fine-tuning the parameters of a
quadruped robot controller by introducing slight variations
over repeated motions. Sugimoto et al. [6] were able to
efficiently improve the movement policy of a humanoid
robot using a limited number of samples from its real
environment. Further, in physical human-robot interaction a
recent study showed that interaction was facilitated when the
robot movement closely resembled natural human movement
[7]. These examples demonstrate that applying insights from
biological motor control principles may prove useful for
robot motor control and human-robot interaction.

This study examined the control strategies that humans
employ when physically (and skillfully) interacting with
dynamically complex objects. In particular, we studied the
task of transporting a cup of coffee in the presence of visible
and predictable external perturbations. The task was rendered
in a virtual environment using a robotic manipulandum [8]
and perturbations either resisted or assisted the motion.
Such a task poses a challenge due to the underactuated,
nonlinear, and chaotic dynamics of the object. Moreover,
object interaction introduces bidirectional forces that pose
a control challenge absent in free movements [9].

It is generally assumed that humans acquire an internal
model of the task to predict object dynamics and thereby
afford inverse dynamics control [10] [11] [12] [13]. However,
control based on internal models for physical interaction with
objects exhibiting nonlinear and underactuated dynamics
appears challenging. Furthermore, relying on feedback cor-
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rections is not plausible due to the relatively long feedback
delays in the neuromotor system. We therefore hypothesized
that rather than learning accurate and precise models, humans
seek to make interactions predictable. Predictability implies
that expected uncertainties in the future, and their effects,
are minimized.

We operationalize predictability in terms of stability: A
stable system rejects small perturbations and returns to its
stable orbit, which is predictable. We hypothesized that
humans learn such stable and predictable trajectories to
obviate error corrections and extensive computations based
on accurate and precise models of nonlinear dynamics.
This strategy provides robustness in the face of external
perturbations and model-based closed-loop control becomes
less critical.

To measure stability and convergence of a given trajectory,
we used contraction theory [14]. Contraction analysis as-
sesses stability of nonlinear systems by studying convergence
between trajectories. Contraction theory is well-suited to
the problem at hand since we are not interested in the
final nominal behavior, such as equilibrium points or limit
cycles, but rather in those trajectories that forget initial
conditions, noise, and perturbations. Regions of the state
space in which neighboring trajectories converge to each
other are contraction regions.

This study shows that humans indeed exploit contrac-
tion regions to deal with perturbations during dynamically
complex physical interactions. In particular, we show that
humans exploit the contraction regions of the free, unforced
system. This is energetically efficient since the system is
driven to a state where its natural, passive dynamics guide it
to convergence and there is no need to exert any extra effort.

This paper is organized as follows. A review of some of
the main results of contraction analysis is provided in Section
II. Section III details the task, its simplified model, and the
experimental paradigm. Section IV presents computations
of the contraction regions. Section V tests the hypothesis
and assesses the human trajectories with respect to the
contraction regions. Section VI explores directions for future
work.

II. BACKGROUND

Lohmiller and Slotine [14] developed contraction analysis
as a method for differentially analyzing stability and conver-
gence of nonlinear systems, by quantifying the convergence
of neighboring trajectories.

Consider the general form of a nonlinear system

ẋ = f(x, t), (1)

where f is an n×1 nonlinear vector function and x is an n×1
state vector. This equation may also represent the closed-
loop dynamics of a control system with a feedback controller
u(x, t).

Next, consider two neighboring trajectories, x1(t) and
x2(t), representing two solutions of (1) for two different ini-
tial conditions x01 and x02 respectively. A virtual infinitesimal

Fig. 1. Virtual displacement δx between two neighboring solutions x1(t)
and x2(t) of ẋ = f(x, t).

displacement between the trajectories at a fixed time is δx,
as illustrated in Figure 1.

From (1), the differential is

δẋ =
∂f

∂x
(x, t)δx. (2)

Thus, the rate of change of the squared distance between
these trajectories is

d

dt
(δxT δx) = 2δxT

∂f

∂x
δx. (3)

Any length ‖δx‖ converges exponentially to zero if the
Jacobian ∂f

∂x is uniformly negative definite. Any region of
the state space in which the Jacobian satisfies this negative
definite condition is referred to as a contraction region. For
the Jacobian to be uniformly negative definite, this means
that

∃β > 0,∀x, ∀t ≥ 0,
1

2
(
∂f

∂x
+
∂fT

∂x
) ≤ −βI < 0. (4)

In this case, all the eigenvalues of the symmetric part of the
Jacobian need to be uniformly negative definite. However,
this is only a sufficient condition for exponential conver-
gence.

A necessary and sufficient condition for exponential con-
vergence can be formulated by a more general definition of
differential length. Consider a differential coordinate trans-
formation of the form

δz = Θ(x, t)δx, (5)

where Θ(x, t) is a square matrix that satisfies ΘT Θ > 0. Θ is
referred to as the contraction metric. In this new coordinate
frame, a contraction region is one that satisfies

1

2
(F + FT ) < 0, (6)

where F is the generalized Jacobian

F = (Θ̇ + Θ
∂f

∂x
)Θ−1. (7)

All eigenvalues of the symmetric part of the generalized
Jacobian F must be uniformly negative definite. Therefore,
a necessary and sufficient condition for a region of the state
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space to be contracting is that there exist a metric Θ such
that ΘT Θ > 0 and 1

2 (F + FT ) < 0 over that region. If
this condition is satisfied, any trajectory starting in a ball
of constant radius (with respect to the metric), centered on a
given trajectory that is contained at all times in a contraction
region with respect to that metric, remains in that ball and
converges exponentially to that trajectory.

It is important to mention that finding a suitable metric
is not trivial, and can be the most challenging part of
contraction analysis. Several methods have been proposed
for obtaining a metric, including semi-definite programming
[15] and sums-of-squares programming [16]. This study will
use a method based on solving a partial differential equation
to arrive at a suitable metric.

III. THE CUP-OF-COFFEE TASK EXPERIMENT

Transporting a cup filled with coffee is an example of
physical interaction with a dynamically complex object;
moving the cup causes sloshing of the coffee, which in turn
exerts forces on the cup and the hand, i.e., the task requires
interacting with complex nonlinear fluid dynamics. In the
experimental task subjects transported this underactuated
object from a start point to an end point, while traversing a
visible perturbation along the way. Magnitude and direction
of the perturbation are known and subjects could learn the
best strategy in 60 trials.

A. Mechanical Model of the Task

Simulating a realistic 3D cup with sloshing coffee with
nonlinear equations from fluid mechanics is computationally
expensive, especially when representing the system in a vir-
tual environment. In addition, analytical treatment becomes
vastly more challenging. Therefore, the task was simplified
to a semicircular 2D arc with a ball rolling inside. The
motion of the cup was limited to one direction along the
horizontal axis. Assuming that the ball does not roll and only
slides without friction along the cup, the system becomes
mathematically equivalent to the well-known cart-pendulum
system, with the pendulum being undamped. Despite this
simplification, much of the complex dynamic behavior was
retained. Figure 2 illustrates the real task (Fig. 2A), the
conceptual model (Fig. 2B), and the mechanical model (Fig.
2C).

The equations of motion of the mechanical model are

(m+M)ẍ(t) = lm
(
φ̇(t)2 sin(φ(t))− φ̈(t) cos(φ(t))

)
+ u− bẋ(t), (8)

lφ̈(t) = −g sin(φ(t))−Gẍ(t) cos(φ(t)), (9)

where x(t) denotes the position of the cart, φ(t) denotes the
pendulum angle with a counterclockwise positive convention,
m is the mass of the pendulum, M is the mass of the
cart, l is the length of the massless pendulum rod, and g
is the gravitational acceleration. The force exerted by the
human subject is u. For contraction regions to exist, there
must be some form of energy dissipation. Therefore damping
was added in the x coordinate, with the damping coefficient

Fig. 2. Different models of the cup task (A, B, C) and the virtual interface
(D, E).

denoted by b. Applied to the horizontal displacement of the
cart, this damping may arise from human arm impedance.
To increase the task challenge and to exclude the trivial case
where the contraction region spans the entire state space, the
cup acceleration ẍ was multiplied by a gain G. This makes
the ball more responsive to movements of the cup when
implemented in the virtual environment. The parameters used
to simulate the cup task in the virtual environment were:
M = 3.5kg, m = 0.3kg, l = 0.35m, b = 20N.s/m, and
G = 5.

B. The Experimental Virtual Task

This simplified mechanical model was simulated in a vir-
tual environment with visual and haptic feedback interfaced
with a robotic manipulandum, as depicted in Fig. 2D. The
projection screen displayed a cup (corresponding to the cart)
and ball (corresponding to the pendulum bob), as seen in Fig.
2E. Participants were asked to move the cup from the start
box A to the target box B as fast as possible. In addition,
the cup should come to rest in box B without the ball rolling
beyond the rim of the cup and escaping. At 60% of the travel
distance, a perturbation of magnitude 40N and duration 20ms
was applied to the cup in the horizontal direction. The forces
either assisted or resisted the cup, i.e. acted either in the
direction of motion of the cup or against it. The position
of the perturbation was visually displayed as a bump on the
horizontal line (Fig. 2E) and the subject always knew the
magnitude and the direction of the perturbation as they were
presented in blocks.

The experiment consisted of 4 blocks. To familiarize
participants with the task, block 1 did not present any per-
turbation and subjects just moved from left to right. Blocks
2 and 4 comprised 60 trials each and involved assistive and
resistive perturbations respectively. Block 3 comprised 10
baseline trials between the two perturbation blocks. At the
beginning of each trial, the cup was centered in box A and
the ball rested at its equilibrium position.
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C. Apparatus and Data Acquisition

The participants in the experiment were seated in front of
a large projection screen (2.4× 2.4m) at about 2m distance.
Physical interaction with the virtual environment was via a
3-degree-of-freedom force-controlled robotic manipulandum
(HapticMaster, Motekforce, NL [8]). By applying a force
to the handle of the robotic arm, participants controlled the
horizontal x-position of the virtual cup. The robotic arm was
restricted to move only in the horizontal direction along the
subject’s frontal plane to ensure a uni-directional motion of
the cup, consistent with the model. The robotic arm provided
haptic feedback, allowing participants to sense the system’s
inertia, the force of the ball on the cup, and the perturbations.
More details on the manipulandum’s end-effector position
resolution, haptic resolution, and force sensitivity, are pro-
vided in [8].

The force applied by the participants to the manipu-
landum (u) and the kinematics of the cup and the ball
(x, ẋ, ẍ, φ, φ̇, φ̈) were all recorded at 120 Hz. Data was
collected from four subjects.

IV. ANALYSIS OF CONTRACTION REGIONS

To compute the contraction regions of the model (8)
and (9), the equations were re-written in their state-space
representation. Taking X = (ẋ, φ, φ̇)T = (x1, x2, x3)T , the
state-space equations are

Ẋ =

ẍφ̇
φ̈

 =

ẋ1
ẋ2
ẋ3


=


−bx1+u+gm sin(x2) cos(x2)+lmx32 sin(x2

−Gm cos2(x2)+m+M

x3
G cos(x2)(u−bx1)+g(m+M) sin(x2)+Glmx32 sin(x2) cos(x2)

Glm cos2(x2)−l(m+M)

 .

(10)

For a region to be contracting, the Jacobian must be uni-
formly negative definite in this region. For the parameterized
model, the symmetric part of the Jacobian, Jsym, for the free
uncontrolled system (u = 0) was not found to be negative
definite for any point in the state space. However, this did
not rule out the existence of contraction regions, since the
condition on negativity of Jsym is only a sufficient one.

The next step was to find a contraction metric Θ(X, t) for
which some regions of the state space would be contracting.
The partial differential equation provided in [14] for com-
puting a suitable metric revealed the contraction regions

∂Θ

∂X
f + ΘJ = −Θ, (11)

where f is the nonlinear vector function describing the
dynamics (10) and J is the Jacobian ∂f

∂X . This partial
differential equation was solved numerically to obtain the
contraction metric, which then enabled the computation
of the generalized Jacobian F from (7). To deduce the
contraction regions, the negativity condition (6) was tested
for points in the state space within the range

−0.2 ≤ ẋ ≤ 0.7; −1.5 ≤ φ ≤ 1.5; −6 ≤ φ̇ ≤ 6.

Fig. 3. Contraction regions in the state space of the cart-pendulum (cup-
ball) system. The black points indicate states that satisfied the negativity
condition (6). The yellow contraction regions are the minimum volume
ellipsoids that contain these points.

These boundaries were used since human subject’s data were
confined to this range. The points in the state space that sat-
isfied the condition were therefore elements of a contraction
region. Figure 3 displays these contraction regions.

V. EXPERIMENTAL RESULTS

As the contraction regions have been computed, the human
data were evaluated with respect to the contraction regions.
The goal was to test the hypothesis that humans take ad-
vantage of the contraction regions to absorb or exploit the
perturbations.

A. Assisting Perturbations

Figure 4 illustrates one early trial and one late trial for one
exemplary subject in the block with assisting perturbations.
For ease of interpretation, the trajectories and the contraction
regions have been projected onto the φ−φ̇ plane. In the early
trials, the trajectories did not pass through any contraction
regions. However, after some practice, the contraction region
was entered just prior to the perturbation. This caused the
perturbation to occur within the contraction region, thereby
mitigating instability and increasing predictability.

This strategy is effective as it reduces divergence and the
probability of chaotic and unpredictable behavior. Figure 5
presents one late trial in the full 3 dimensions of the state
space. The same changes of strategy were observed in four
other subjects.

B. Resistive Perturbations

Figure 6 illustrates an early and a late trial for one subject
when performing the task with a resistive perturbation.
For ease of interpretation, the human trajectories and the
contraction regions have been projected onto the φ − φ̇
plane. As for assistive perturbations, early trials did not
make use of the contraction regions. However, as the subject
learned to navigate the perturbations, the strategy changed
and the trajectory passed through a contraction region after
the perturbation. This attenuated the transient effects of the
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Fig. 4. Human trajectories for the condition with assisting perturbation: (a) Early trial (b) Late trial. P− denotes the instant just before the perturbation
while P+ denotes the instant after the perturbation. The system starts at (0, 0).

Fig. 5. One late trial with assisting perturbations. The subject learned the perturbation and shapes the trajectory to arrive at a contraction region.
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Fig. 6. Human trajectories for resistive perturbation: (a) Early trial (b) Late trial. P− denotes the instant just before the perturbation while P+ denotes
the instant after the perturbation. The initial conditions are (0, 0).

perturbation and stabilized the trajectory, thereby increasing
predictability. The same pattern was observed in all four
subjects. Figure 7 presents a different late trial in the full
3 dimensions of the state space.

The differences between the control strategies for assistive
and resistive perturbations are noteworthy. For an assistive
perturbation, the velocity of the cart increased and hence

there was a greater risk of onset of chaotic and unpredictable
dynamics. This is why subjects chose to absorb the per-
turbation immediately. In contrast, a resistive perturbation
decreased the velocity of the system and did not require
an immediate stabilization. However, the transients of this
sudden change in the direction of motion needed to be
attenuated, which required that the system enter a contraction
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Fig. 7. A late trial with resistive perturbations. The subject passed through the contraction region after the perturbation to stabilize the trajectory.

region after the perturbation.

VI. CONCLUSION AND FUTURE WORK

This work examined a complex interactive task of trans-
porting an underactuated dynamic object, a cup of coffee,
to reveal human motor control strategies. We showed that
humans exploited contraction regions of the unforced, free
system to compensate for known perturbations. Future work
will examine whether these human control principles can
enhance dexterous manipulation capabilities of robots. We
envisage that “contraction-based” control will naturally lead
to robust manipulation, particularly in physically interactive
tasks. Moreover, we would like to investigate the generality
of this control strategy in human motor control, and whether
it extends to other types of tasks.
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